A pseudo-trigonal bipyramidally coordinated Pt atom in dicarbonyl-bis(octacarbonyl- μ-dicyclohexylphosphidodirhenio)platinum(II)

Hans-Jürgen Haupt, Ulrich Flörke* and Stefanie Klose

Fachbereich Chemie und Chemietechnik, Universität Paderborn,
Warburgerstraße 100, D-33098 Paderborn, Germany

Correspondence e-mail: uf@chemie.uni-paderborn.de

Received 27 April 2001
Accepted 3 May 2001
In the title compound, $\left[\mathrm{PtRe}_{4}\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{P}\right)_{2}(\mathrm{CO})_{18}\right]$ or $[(\mu-$ $\left.\left.\mathrm{PCy}_{2}\right)(\mathrm{CO})_{8} \mathrm{Re}_{2}\right]_{2} \mathrm{Pt}(\mathrm{CO})_{2}$ (Cy is cyclohexyl), two phosphidobridged dirhenium groups are linked by a $\operatorname{Pt}(\mathrm{CO})_{2}$ unit and show different bonding patterns for stereochemical reasons. The Re-Re distances are 3.2620 (15) and 3.0739 (15) \AA, and the $\mathrm{Pt}-\mathrm{Re}$ distances are 2.9165 (12), 2.9025 (15) and 2.8548 (13) Å.

Comment

As a continuation of our investigations into triangular cluster complexes $M_{2} \operatorname{Rh}\left(\mu-\mathrm{P} R_{2}\right)(\mu-\mathrm{CO})_{2}(\mathrm{CO})_{8}(M=\mathrm{Mn}, \mathrm{Re} ; R$ is an organic residue) as hydroformylation catalysts (Beckers et al., 1995; Haupt et al., 2001), we wished for selectivity reasons to exchange the Rh^{I} atom for a more nucleophilic $\mathrm{Pt}^{\mathrm{II}}$ atom as the reaction centre. Platinum(II) carbonyl cluster complexes of this type are very rare (Braunstein et al., 1999).

The molecule $\left[\left(\mu-\mathrm{PCy}_{2}\right)(\mathrm{CO})_{8} \mathrm{Re}_{2}\right]_{2} \mathrm{Pt}(\mathrm{CO})_{2}$, (I) (Fig. 1), consists of two phosphido-bridged dirhenium carbonyl moieties linked via the central Pt atom. The $\mathrm{Pt}(\mathrm{CO})_{2}$ constituent extends the original $(\mu-\mathrm{P} 1) \mathrm{Re}_{2}$ core to a four-membered nearly planar $\quad \mu$ - $\mathrm{PRe}_{2} \mathrm{Pt} \quad$ ring. The maximum deviation of an atom from this best plane is 0.082 (6) \AA for P 1 ; the $\mathrm{PRe}_{2} / \operatorname{Re}_{2} \mathrm{Pt}$ dihedral angle is 8.1°. Both Re atoms have a slightly distorted octahedral coordination from four terminal CO groups, the bridging P and the Pt atom. The CO ligands at both Re atoms show an ecliptic arrangement, with $\mathrm{C}-\operatorname{Re} 1-\operatorname{Re} 2-\mathrm{C}$ torsion angles (here and in the following text as absolute values) ranging from 0.4 to 3.7°. The CO
groups attached to Pt are also in ecliptic positions relative to those at Re1 and Re2, with torsion angles ranging from 0.5 to 6.1°. The Re1-Re2 bond is 3.2620 (15) \AA and the $\mu-\mathrm{P} 1$ bridge is symmetric with respect to the equivalent $\mathrm{P}-\operatorname{Re}$ bond lengths of 2.454 (6) and 2.459 (6) A. The two $\mathrm{Pt}-\mathrm{Re}$ bonds differ slightly in length [2.9165 (12) and 2.9025 (15) \AA for Re1 and Re 2 , respectively], but they are longer than other unsupported $\mathrm{Pt}-\mathrm{Re}$ bonds reported in the literature, which range from 2.706 (1) to 2.899 (1) A (Casey et al., 1987, 1992; Urbancic et al., 1984; Beringhelli et al., 1990, 1993; Mague \& Lin, 1994). A $\mu-\mathrm{H}$ bridged $\mathrm{Pt}-\mathrm{Re}$ edge has been reported with a length of 2.906 (1) \AA (Beringhelli et al., 1990).

(I)

A third but shorter $\mathrm{Pt}-\mathrm{Re} 3$ bond of 2.8548 (13) \AA connects the second $(\mu-\mathrm{P} 2) \mathrm{Re}_{2}(\mathrm{CO})_{8}$ unit to platinum. Again, the Re3-Re4 bond of 3.0739 (15) \AA is bridged by a PCy_{2} ligand and both Re atoms are attached to four terminal CO groups. These groups also show an ecliptical arrangement along the $\mathrm{Re}-\mathrm{Re}$ vector, with torsion angles in the range 3.7-7.7 ${ }^{\circ}$. Neglecting the $\mathrm{Re}-\mathrm{Re}$ bond, Re4 is coordinated by five nonmetal atoms, thus realising a distorted square-pyramidal coordination, whereas Re3 reaches a strongly distorted octahedral coordination with the additional $\mathrm{Re}-\mathrm{Pt}$ interaction. The CO ligands at Re3 and those attached to Pt show a staggered conformation along the $\mathrm{Re} 3-\mathrm{Pt}$ vector, with torsion angles of $58.8(10)(\mathrm{C} 9-\mathrm{Pt}-\mathrm{Re} 3-\mathrm{C} 13)$ and $57.2(10)^{\circ} \quad(\mathrm{C} 10-\mathrm{Pt}-\mathrm{Re} 3-\mathrm{C} 12)$, realising a sterically favourable arrangement. In contrast with the symmetric μ-P1 bridge, the $\mu-\mathrm{P} 2$ atom shows two different $\mathrm{P}-\mathrm{Re}$ bond lengths of 2.429 (6) (Re3) and 2.396 (6) \AA (Re4), the longer one being trans to the Re3-Pt bond. With respect to the different $\mathrm{Re}-\mathrm{Pt}-\mathrm{Re}$ angles in the basal $\mathrm{Re}_{3} \mathrm{Pt}$ plane of 68.19 (4), 135.80 (4) and 155.33 (4) ${ }^{\circ}$ for $\mathrm{Re} 1 / 2, \operatorname{Re} 1 / 3$ and

The molecular structure of (I) showing 50% probability ellipsoids. H atoms have been omitted for clarity.

Re2/3, respectively, the fivefold coordination geometry around Pt can be described as pseudo-trigonal bipyramidal with CO groups 9 and 10 at the apices. The $\mathrm{Re}_{3} \mathrm{Pt}$ plane is almost planar, with a maximum deviation from the best plane of 0.082 (2) Å for Pt. A similar Y-shaped planar coordination pattern for the central metal atom with Y-angles of 64,138 and 158° is known from the coordination of, for example, Ir or Rh in $\left(\mu-\mathrm{P} R_{2}\right)(\mathrm{CO})_{8} \mathrm{Re}_{2}\left[\mu-M(\mathrm{CO})_{2} \mathrm{PPh}_{3}\right] \quad(M=\mathrm{Ir}, \mathrm{Rh})$ (Haupt et al., 1994). The uncommon coordination geometry observed here for platinum, with the different bonding patterns of one bridging and one end-on linked $\left(\mu-\mathrm{PCy}_{2}\right)(\mathrm{CO})_{8} \mathrm{Re}_{2}$ unit, must be due to stereochemical reasons. Neither an alternative planar quadratic nor spirocyclic $\mathrm{Re}_{4} \mathrm{Pt}$ arrangement, both then with two bridging Re_{2} units, would be possible because of the steric repulsion of CO groups 3,8 and 12,15 , or 9,10 and 12,15 .

Experimental

The salts $\mathrm{Pt}(\mathrm{COD})\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{2}$ (COD is cyclooctadiene) and $\mathrm{NEt}_{4}\left[\mathrm{Re}_{2}\left(\mu-\mathrm{PCy}_{2}\right)(\mathrm{CO})_{8}\right]$ were reacted in dichloromethane solution in the presence of gaseous CO (removal of the COD ligand) at 258 K . The only separable product (thin-layer chromatography; eluant: dichloromethane $/ n$-hexane, $1 / 5$) was the title compound. Crystals were grown from chloroform/ n-pentane, although very few were of acceptable quality and scattering power.

Crystal data

$\left[\mathrm{PtRe}_{4}\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{P}\right)_{2}(\mathrm{CO})_{18}\right]$
$M_{r}=1838.60$
Monoclinic, $P 2_{1} / c$
$a=17.561$ (2) \AA
$b=16.728$ (3) \AA
$c=17.408$ (6) \AA
$\beta=102.42(2)^{\circ}$
$V=4994(2) \AA^{3}$
$Z=4$
$D_{x}=2.445 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 21
reflections
$\theta=7.5-13.2^{\circ}$
$\mu=12.58 \mathrm{~mm}^{-1}$
$T=203(2) \mathrm{K}$
Needle, red
$0.40 \times 0.05 \times 0.04 \mathrm{~mm}$

Data collection
Bruker $P 4$ diffractometer ω scans
Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.264, T_{\text {max }}=0.532$
10719 measured reflections
10342 independent reflections
4254 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.059$
$w R\left(F^{2}\right)=0.170$
$S=0.97$
10342 reflections
605 parameters

Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$.

$\mathrm{Pt} 1-\mathrm{Re} 3$	$2.8548(13)$	$\mathrm{Re} 2-\mathrm{P} 1$	$2.459(6)$
$\mathrm{Pt} 1-\mathrm{Re} 2$	$2.9025(15)$	$\mathrm{Re} 3-\mathrm{P} 2$	$2.429(6)$
$\mathrm{Pt} 1-\mathrm{Re} 1$	$2.9165(12)$	$\mathrm{Re} 3-\mathrm{Re} 4$	$3.0739(15)$
$\mathrm{Re} 1-\mathrm{Re} 2$	$3.2620(15)$	$\mathrm{Re} 4-\mathrm{P} 2$	$2.396(6)$
$\mathrm{Re} 1-\mathrm{P} 1$	$2.454(6)$		
$\mathrm{C} 9-\mathrm{Pt} 1-\mathrm{C} 10$			$56.11(3)$
$\mathrm{Re} 3-\mathrm{Pt} 1-\mathrm{Re} 2$	$172.9(10)$	$\mathrm{Pt} 1-\mathrm{Re} 2-\mathrm{Re} 1$	$104.08(15)$
$\mathrm{Re} 3-\mathrm{Pt} 1-\mathrm{Re} 1$	$155.33(4)$	$\mathrm{P} 1-\mathrm{Re} 2-\mathrm{Pt} 1$	$163.66(16)$
$\mathrm{Re} 2-\mathrm{Pt} 1-\mathrm{Re} 1$	$135.80(4)$	$\mathrm{P} 2-\mathrm{Re} 3-\mathrm{Pt} 1$	$65.8(7)$
$\mathrm{C} 3-\mathrm{Re} 1-\mathrm{Re} 2$	$68.19(4)$	$\mathrm{C} 12-\mathrm{Re} 3-\mathrm{Re} 4$	$49.95(15)$
$\mathrm{P} 1-\mathrm{Re} 1-\mathrm{Re} 2$	$126.4(7)$	$\mathrm{P} 2-\mathrm{Re} 3-\mathrm{Re} 4$	$145.35(4)$
$\mathrm{Pt} 1-\mathrm{Re} 1-\mathrm{Re} 2$	$48.47(13)$	$\mathrm{Pt} 1-\mathrm{Re} 3-\mathrm{Re} 4$	$111.5(7)$
$\mathrm{P} 1-\mathrm{Re} 1-\mathrm{Pt} 1$	$55.70(3)$	$\mathrm{C} 15-\mathrm{Re} 4-\mathrm{Re} 3$	$50.89(14)$
$\mathrm{C} 8-\mathrm{Re} 2-\mathrm{Re} 1$	$103.81(14)$	$\mathrm{P} 2-\mathrm{Re} 4-\mathrm{Re} 3$	$83.19(18)$
$\mathrm{P} 1-\mathrm{Re} 2-\mathrm{Re} 1$	$129.2(7)$	$\mathrm{Re} 1-\mathrm{P} 1-\mathrm{Re} 2$	$79.15(18)$
	$48.34(14)$	$\mathrm{Re} 4-\mathrm{P} 2-\mathrm{Re} 3$	

The U values of the C atoms were restrained such that anisotropic components along common bonds were approximately equal. The largest peak of residual electron density is $0.9 \AA$ from Re3.

Data collection: XSCANS (Siemens, 1995); cell refinement: XSCANS; data reduction: SHELXTL (Siemens, 1995); program(s) used to solve structure: $S H E L X T L$; program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: JZ1465). Services for accessing these data are described at the back of the journal.

References

Beckers, H.-G., Flörke, U. \& Haupt, H.-J. (1995). Angew. Chem. Int. Ed. Engl. 34, 1325-1327.
Beringhelli, T., Ceriotti, A., Ciani, G., D’Alfonso, G., Garlaschelli, L., Della Pergola, R., Moret, M. \& Sironi, A. (1993). J. Chem. Soc. Dalton Trans. pp. 199-200.
Beringhelli, T., Ceriotti, A., D'Alfonso, G., Della Pergola, R., Ciani, G., Moret, M. \& Sironi, A. (1990). Organometallics, 9, 1053-1059.

Braunstein, P., Oro, L. A. \& Raithby, P. R. (1999). Metal Clusters in Chemistry, Vol. 2. Weinheim: Wiley-VCH.
Casey, C. P., Rutter, E. W. Jr, \& Haller, K. J. (1987). J. Am. Chem. Soc. 109, 6886-6887.
Casey, C. P., Wang, Y., Petrovich, L. M., Underiner, T. L., Hazin, P. N. \& Desper, J. M. (1992). Inorg. Chim. Acta, 198, 557-564.
Haupt, H.-J., Flörke, U. \& Beckers, H.-G. (1994). Inorg. Chem. 33, 3481-3486.
Haupt, H.-J., Wittbecker, R. \& Flörke, U. (2001). Z. Anorg. Allg. Chem. 627, 472-484.
Mague, J. T. \& Lin, Z. (1994). Organometallics, 13, 3027-3037.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Siemens (1995). XSCANS (Version 2.1) and SHELXTL (Version 5.03). Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Urbancic, M. A., Wilson, S. R. \& Shapley, J. R. (1984). Inorg. Chem. 23, $2954-$ 2958.

